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It is well-known from scaling arguments that action-based field theories do not possess localized
solutions in spaces of more than one dimension. The same scaling argument, modified to account for
external forces, is applied to magnetic plasma confinement in an axisymmetric torus. It yields an
integral solvability condition of some interest. © 2009 American Institute of Physics.
�doi:10.1063/1.3227812�

I. INTRODUCTION

In field theory the word “soliton” is sometimes used to
denote any nonlinear solution to the field equations that is
spatially localized, in the sense of vanishing in the limit of
infinite distance from some origin. In 1964 Derrick1 pointed
out that a scalar field whose field equations possessed an
action principle does not possess localized solutions, in a
space of more than one dimension; such fields therefore can-
not support solitons. Here we apply modified versions of
Derrick’s argument to three variational equations of magne-
tized plasma physics: the Sinh–Poisson �SP� equation, the
Spitzer problem for parallel transport, and the Grad–
Shafranov �GS� equation. Our results uncover significant
properties of the solutions to these equations. In one case the
revealed feature is already well known, although the analyti-
cal method seems interesting even in this case. For the other
two equations, we obtain families of integral relations that all
solutions must satisfy. At least some of the integral relations
obtained appear to be new.

Derrick’s method can be summarized as follows. Begin-
ning with a variational principle, one uses a trial function
that differs from the exact solution only by a transformation
of the independent variables. The transformation is charac-
terized by a parameter, �, such that �=1 corresponds to the
identity transformation. By requiring the variational quantity
to be extremal at this value, one is able to extract useful
information about exact solution, although it remains un-
known.

Derrick’s transformation was a simple scale transforma-
tion, x→�x. In this work we find it necessary to consider
more general transformations. Furthermore the variational
principle in Derrick’s case lacked an intrinsic scale length; in
one of the problems we consider, a characteristic scale be-
comes important. Thus our results depend upon generalizing
Derrick’s technique.

The bearing of Derrick’s analysis on plasma confinement
has been noted previously by Faddeev et al.2

II. PARALLEL TRANSPORT THEORY

A. Variational principle

The analysis of plasma transport parallel to the magnetic
field requires solution of the equation3

C�� f̂� = v�fMA�v/vt� , �1�

where C� denotes a linearized collision operator,

f̂�v� �
f1

fM

is a normalized expression of the first order perturbation f1 to
the distribution function, fM is a Maxwellian distribution
with density n and thermal speed vt=�2T /m corresponding
to temperature T, v� =b ·v is the velocity component in the
direction of the magnetic field B=bB, and A�v /vt� is a func-
tion of the normalized velocity specifying the thermody-
namic forces. The standard form is

A = �� log n −
e

T
��� + �v2

vt
2 −

5

2
	�� log T .

A characteristic feature of Eq. �1�—often called the

“Spitzer problem”—is that the unknown function f̂ appears
inside the collision operator. This is in general a complicated
integro-differential operator, not easily inverted. Therefore
the Spitzer problem is usually solved by means of a varia-
tional principle,4 the simplest version of which is expressed
by

�S = 0, S� f̂ , f̂� = 2P�f� − �� f̂ , f̂� . �2�

Here we have introduced the linear form

P� f̂� =
 d3v f̂v�fMA�v/vt�

and the bilinear form

�� f̂ , f̂� =
 d3v f̂C�� f̂� .

Note that the latter is symmetric in the sense that, for arbi-
trary perturbations g and h,

��ĝ, ĥ� = ��ĥ, ĝ� . �3�

This symmetry reflects the self-adjointness of the collision
operator. It can be assumed to hold for a large family of
operators—essentially any operator that displays both
Onsager symmetry and Boltzmann entropy increase. Note
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also that we reserve the symbol f̂ for the exact solution to the
Spitzer problem.

It is clear from the definitions that

P� f̂� = �� f̂ , f̂� . �4�

Both of these forms measure the rate of entropy production
due to parallel transport. The variational principle �2� follows
easily from Eq. �3�.

B. Scaled trial function

Here we follow Derrick, introducing the trial function

ĝ�v;�� = f̂��v� .

What distinguishes the present problem is the existence of a
natural velocity scale, provided by the thermal speed vt. It is
clear that varying the variational parameter � will have prop-
erties in common with variation of the temperature. To ex-
press this relation we make the temperature and � depen-
dence of both forms explicit, using the notations

P�ĝ� → P�ĝ;�,T�

and

��ĝ, ĝ� → ��ĝ;�,T� .

Then, in particular, Eq. �4� takes the form

P� f̂ ;1,T� = �� f̂ ;1,T� , �5�

which must hold uniformly in T.
Next, beginning with the definition

P�ĝ;�,T� =
 d3v f̂��v�v�fMA�v/vt� ,

we change the integration variable

v → v = �v

to find that

P�ĝ;�,T� = �−1P� f̂ ;1,�2T� �6�

since

�vt � ��2T .

In other words scaling the velocity variable is equivalent,
aside from the overall factor of �−1, to a scaling of the
temperature.

This equivalence characterizes the existence of a natural
velocity scale. We therefore expect a similar property to de-
scribe the bilinear form �, and write

��ĝ;�,T� = �k�� f̂ ;1,�2T� �7�

for some exponent k. We will show presently that in the case
of Coulomb collisions, k=3. The present argument is more
general, assuming only the existence �and uniqueness� of the
velocity scale vt, the self-adjointness property �3�, and suffi-
cient homogeneity of the collision operator to allow a single
scaling law.

Note that the temperature dependence appearing in Eqs.
�6� and �7� is that entering through the velocity scale vt. Thus
for example the gradient scale-length �� log T is not in-
cluded. Notice also that it makes no sense to equate the right-
hand sides of Eqs. �6� and �7�; these quantities are equal only
at �=1. To derive a nontrivial result we must turn to the
variational property.

C. Variational result

When the functional S is evaluated on ĝ it becomes

S� � 2P�ĝ;�,T� − ��ĝ;�,T� .

Since

ĝ��=1 = f̂

the variational principle �2� requires

� �S�

��
�

�=1
= 0. �8�

Now, according to Eq. �6�,

P
�

= 2T
P
T

−
P
�2

while Eq. �7� provides

�

�
= 2�k+1T

�

T
+ k�k−1� .

After setting �=1, as prescribed by Eq. �8�, we can use
Eq. �5� to obtain the differential equation

2T
�

T
= �2 + k�� , �9�

in which � is the exact entropy production. Thus we have
shown that any collision operator that is self-adjoint, and that
satisfies a scaling law of the form �7�, must yield an entropy
production that depends on temperature according to

��T� = T1+k/2�0, �10�

where �0 is independent of T.
It should be emphasized that the result �10� is not a

simple consequence of the assumed scaling �7�, or of the
temperature scaling of Eq. �1�. In fact Eq. �10� cannot be
derived without the variational principle; it depends implic-
itly on the �not otherwise specified� form of the exact solu-

tion f̂ .

D. Coulomb collisions

The form of the entropy production for Coulomb scat-
tering is well known. We consider the simplest case of like-
particle collisions, appropriate for ion collisions, but sup-
press species subscripts. Then we have
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� =
�

4

 d3vd3v�fMfM� � f̂

v�

−
f̂�

v��
	U��� f̂

v�

−
f̂�

v��
	 .

Here � is a constant depending on charge and mass,

U� =
u2�� − u�u

u3 , u� � v� − v�, �11�

and we use primes to denote evaluation on v�; for example,

fM� �
n

	3/2vt
3exp�− v�2/vt

2� .

To verify Eq. �7� for this case, we replace f̂�v� by ĝ= f̂��v�,
and then make the usual change in integration variables,

v → v = �v, v� → v� = �v�.

The Maxwellian factors transform according to

d3vd3v�fM�v;T�fM�v�;T�

→ d3v̄d3v̄�fM�v̄;�2T�fM�v̄�;�2T� .

Each factor involving derivatives of ĝ contributes a factor �,
as does the tensor U��. Thus we obtain

��g;�,T� = �3��f ;1,�2T� �12�

as anticipated in Eq. �7�. It follows from Eq. �10� that
Coulomb collisions are characterized by the entropy produc-
tion rate

� � T5/2. �13�

This prediction is confirmed by the standard analysis.
Of course the standard analysis of the Spitzer problem

supplies much more information than Eq. �13�; by use of
appropriate trial functions, one can obtain a reasonable ap-
proximation to the complete transport matrix.5 What is inter-
esting about the present analysis is its demonstration that the
temperature dependence of transport follows entirely from
the self-adjointness of the collision operator and the scaling
law �12�. No other features of the collisional process matter.

III. SINH–POISSON EQUATION

A. Formulation

The SP equation given by

�2
 + �2 sinh�
� = 0 �14�

governs, among other things, the electrostatic potential of a
fully ionized plasma. It is a nonlinear, second-order partial
differential equation with few known solutions.6,7 Because
the SP equation is not readily solvable and the solutions are
of considerable physical interest, it is worthwhile to extract
as much information as possible regarding the behavior of
the exact solution. Here we derive an exact integral relation,
which provides a nontrivial constraint on all solutions to the
SP equation.

B. Variational principle

The SP equation is the Euler–Lagrange equation of the
following action integral:

A�F� = 

R

1

2
��F�2 − �2 cosh�F��d2x . �15�

We assume the region R is compact, since the SP equation
has no nontrivial solutions on infinite space. In this regard,
our procedure departs from Derrick. Let 
 denote the exact
solution to the SP equation �for given boundary data�. In
order to derive an integral identity from the action integral,
we employ the following variation:


 + �
 = 
 � f�,

where f� is an element of a one-parameter family of coordi-
nate transformations with the following properties:

�i� The region �R is unaffected by all transformations in
the set.

�ii� The set contains a neighborhood of the identity
transformation.

With this variation, the action integral can be considered
a function of the single variable � rather than a functional.
We can then write

A��� = A�
 � f�� .

Let f�=0 denote the identity transformation. Because 
 must
be the extremum solution to the action functional, it is clear
that

��dA

d�
	�

�=0
= 0. �16�

C. Example

Let R be given by

R = ��x,y�:xmin 
 x 
 xmax,xmin 
 y 
 xmax� .

So R is a square box in upper right quadrant of the xy-plane.
We choose a change-of-variables of the form

X�x� = �x2 + bx + c ,

where � ,b and c are free parameters. From the requirement
X�xmin�=xmin and X�xmax�=xmax, we can solve for b and c in
terms of �. This yields

X��x� = �x2 + �1 − ��xmin + xmax��x + �xminxmax �17�

and similarly we have Y��y� with the same functional form.
In accordance with our notation of the previous section, our
family of transformations takes the form

f��x,y� = ��x2 + �1 − ��xmin + xmax��x + �xminxmax,

��y2 + �1 − ��xmin + xmax��y + �xminxmax� ,

where �=0 clearly corresponds to the identity transforma-
tion. The action now takes the form
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A� = 

R

1

2
��
�X��x�,Y��y��2�

− �2 cosh�
�X��x�,Y��y����dX�dY�.

Using the change-of-variables theorem and taking advantage
of the fact that R is left unchanged under all of the mappings
f�, we have

A� = 

R
�1

2

� �


�X�
	2dX�

dx

dy

dY�

+ � �


�Y�
	2dY�

dy

dx

dX�
�

− �2 cosh�
�� dx

dX�

dy

dY�
	�dX�dY�.

The change-of-variables has placed all of the � dependence
in the integrand, allowing us to differentiate with respect to
�. In accordance with Eq. �16�, we get

dA�

d�
= 


R

1

2

� �


�X�
	2 d

d�
�dX�

dx

dy

dY�
	

+ � �


�Y�
	2 d

d�
�dY�

dy

dx

dX�
	�

− �2 cosh�
�
d

d�
� dx

dX�

dy

dY�
	dX�dY�. �18�

We can compute all of these derivatives using the im-
plicit function theorem. To avoid ambiguity, we will tempo-
rarily switch to functional notation, so the names of the vari-
ables are distinct from the names of the functions. Define
F :R3→R as

F�X,x,�� = �x2 + �1 − ��xmin + xmax��x + �xminxmax − X .

From the equation F=0 which follows from Eq. �17�, we can
implicitly define x as a function g of X and �. That is,

h�X,�� � F�X,x = g�X,��,�� = 0.

We then have Dh=0 which implies

�1g = − 1F

2F
.

Computing the partial derivatives and transforming back to
variable notation, we obtain

� �x

�X
	 =

1

2� + �1 − ��xmax + xmin��
,

� d

d�
�

�=0
� �x

�X
	 = 3 − �xmax + xmin� .

All necessary remaining derivatives with respect to � may be
computed similarly. Inserting these expressions into Eq. �18�
and simplifying, we have



R
��x − y�
� �


�x
	2

− � �


�y
	2� + 2xy�2 cosh�
��dxdy

= 0. �19�

We can derive a similar relation for the case of a disk of
radius � centered at the origin. We treat the disk as an annu-
lus with inner radius rmin and let rmin tend to zero in the final
result. The change of variables is similar to the one em-
ployed above,

R��r� = �r2 + �1 − ��rmin + ���r + �rmin� ,

���� = � .

We again use the change-of-variables theorem to place all �
dependence in the integrand. The calculation then proceeds
in the same manner as the case above. Omitting the details of
the calculation, we obtain


 �1

2

r2� �


�r
	2

− � �


��
	2�

− �2r� − 3r2��2 cosh�
��drd� = 0. �20�

These relations hold for arbitrary boundary data and thus can
be simplified with further assumptions regarding 
 on the
boundary. For example, if the boundary conditions do not
depend on �, then Eq. �20� simplifies to


 
 r2

2
� �


�r
	2

− �2r� − 3r2��2 cosh�
��drd� = 0.

Notice that Eqs. �19� and �20� contain different informations;
you cannot derive one from the other using a change of
variables.

IV. GRAD–SHAFRANOV EQUATION

Equilibrium of a magnetically confined, axisymmetric
plasma is described by the GS equation.8,9 This equation is to
be solved for the poloidal magnetic flux 
�x� in some
bounded, toroidal region V; it takes the form

��
 = − I�
�I��
� − R2P��
� , �21�

where

��f � R2 � · ��f

R2 	
and the coordinate R measures distance from the symmetry
axis. The �toroidal� boundary surface �V=S is assumed to be
a flux surface—that is, 
 is constant on the boundary,


�x� = 
b, for x�S . �22�

The functions I�
�, measuring the toroidal field, and P�
�,
measuring the plasma pressure, are presumed to be known.
Both sides of Eq. �21� measure the toroidal current density.

The GS equation possesses the variational principle10

�A = 0, �23�

where
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A�f� = 

V

d3x� ��f �2

2R2 −
I2

2R2 − P	 . �24�

Here f is a trial function; we reserve the symbol 
 for the
actual solution to GS. The integral is taken over the region V.
Note that, in view of Eq. �22�, the flux at the boundary is not
varied: f�x�=
�x� for x in S. It is convenient to introduce the
potential energy

U�f ,R� =
I�f�2

2R2 + P�f� . �25�

Then the variational quantity A is seen to be analogous to
mechanical action,

A�f� = 

V

d3x
 ��f �2

2R2 − U�f ,R�� , �26�

since the integrand can be identified with the classical
Lagrangian—the difference between kinetic and potential en-
ergies. We make this identification explicit by introducing
the kinetic energy functional

T�f� = 

V

d3x
��f �2

2R2

and two potential energy functionals,

UI�f� = 

V

d3x
I�f�2

2R2 ,

UP�f� = 

V

d3xP�f� .

Then

A�f� = T�f� − UI�f� − UP�f� . �27�

An alternative version is more physical; since the poloi-
dal �BP� and toroidal �BT� magnetic field components are
given by

BP = �� � �
, BT = I � � ,

where � is the toroidal �azimuthal� angle for cylindrical co-
ordinates �R ,� ,z�, we can write

A =
1

2



V
d3x�BP

2 − BT
2 − 2P� . �28�

A. Geometry and formulation

We suppose that the toroidal chamber has a rectangular
cross section. The inner �outer� radius is denoted by Ri �Ro�;
the two horizontal walls are located at z= �zm. Thus the
action can be expressed as �suppressing a factor of 4	�

A�f� = 

Ri

Ro

dR

0

zm

dzR
 ��f �2

2R2 − U�f ,R�� . �29�

Now consider a coordinate transformation

r � �R,z� → r = �R̄, z̄�

that depends continuously on a parameter �, in some neigh-
borhood of �=0. We require the function r�r ,�� to satisfy

r�r,0� = r, for all r , �30�

r�r,�� = r, for r � S and � sufficiently small. �31�

We use the transformed coordinates to define a trial function

f�R,z� = 
�R̄, z̄� , �32�

where 
 is the exact solution. Then the action becomes a
function of the parameter

A� � A�f�� ,

which evidently satisfies

�dA�

d�
�

�=0
= 0. �33�

This relation provides an integral relation for the fields and
pressure, for each choice of the coordinate transformation r.
We next make this relation more explicit.11

For simplicity we consider transformations that are un-

coupled in the sense that R̄ depends only on R and �, while z̄
depends only on z and �. Then, after transforming integration
variables, the action is expressed by Eq. �27�, with

T� = 

Ri

Ro

dR̄R̄

0

zm

dz̄
1

2R̄2
��1�R̄, z̄,��


R̄

2
+ �2�R̄, z̄,��
z̄

2� ,

�34�

UI� = 

Ri

Ro

dR̄R̄

0

zm

dz̄�3�R̄, z̄,��
I2�
�R̄, z̄��

2R̄2
, �35�

UI� = 

Ri

Ro

dR̄R̄

0

zm

dz̄�4�R̄, z̄,��P�
�R̄, z̄�� . �36�

Here we have introduced the functions

�1�R̄, z̄,�� =
R̄R̄R

Rz̄z

, �37�

�2�R̄, z̄,�� =
R̄z̄z

RR̄R

, �38�

�3�R̄, z̄,�� =
R̄

RR̄Rz̄z

, �39�

�4�R̄, z̄,�� =
R

R̄R̄Rz̄z

. �40�

Here we emphasize that all quantities must be evaluated in

terms of the integration variables R̄ and z̄.
It is now straightforward to compute the derivatives with

respect to �. Using the abbreviation
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F� � � �F

��
�

�=0

we have, suppressing bars,

T� = 

Ri

Ro

dRR

0

zm

dz
1

2R2 ��1��R,z�
R
2 + �2��R,z�
z

2� , �41�

UI� = 

Ri

Ro

dRR

0

zm

dz�3��R,z�
I2�
�R,z��

2R2 , �42�

UP� = 

Ri

Ro

dRR

0

zm

dz�4��R,z�P�
�R,z�� . �43�

Then Eq. �33� provides the integral identity

T� = UI� + UP� . �44�

All that remains is the calculation of the �i�.

B. Example

We consider the transformation

R̄�R,�� = R + �R −
R2 + RoRi

R+
	, z̄�z,�� = z ,

where

R� � Ro � Ri.

The inverse function is

R�R̄ ,� =
R+

2
�1 + � − �X� ,

where

X � 1 −
2

R+
�2R̄ − R+� + �2R−

2

R+
2 .

It is not hard to verify that this transformation satisfies Eqs.
�30� and �31�. The derivative is12

R� � � �R

��
�

�=0
=

1

R+
�R̄�R̄ − R+� + RiRo� . �45�

We use this result to compute

�1� = 2 − 3
R̄

R+
−

RiRo

R+R̄
= − �4�, �46�

�2� =
R̄

R+
−

RiRo

R+R̄
= �3�. �47�

The integral identity in this case is therefore



Ri

Ro dR

2R



0

zm

dz�2 – 3
R

R+
−

RiRo

R+R
	�
R

2 + P�
��

= 

Ri

Ro dR

2R



0

zm

dz�RiRo

R+R
−

R

R+
	�
z

2 − I2�
�� . �48�

V. SUMMARY

Variational principles are commonly used in plasma
physics to find approximate solutions to equations for which
general, exact solutions are not known. The variational
method is very powerful in this context. This work shows
that variational methods, based on the insight of Derrick, can
also be used to obtain exact properties of the solutions. Such
properties have intrinsic interest and also could be used to
benchmark and validate numerical or other approximate
solutions.

Derrick’s key idea was to construct a trial function that
differs from the exact solution only by a coordinate transfor-
mation, which is connected to the identity transformation;
information about the solution is obtained by requiring that
the variational quantity be stationary at the identity. In this
way, the variational problem is reduced to one involving a
single parameter rather than a space of functions. Derrick’s
use of a simple scaling transformation is applicable only for
equations that hold in unbounded domains, and that lack in-
trinsic scale lengths. To extend the method to problems that
involve boundaries or intrinsic scales, one must generalize
this procedure, allowing in particular for more complicated
coordinate transformations.

We have applied the generalized variational method to
three basic equations of plasma physics, obtaining in each
case conditions that every exact solution must satisfy.
Some of our results appear to be new. In any case the method
seems worth displaying because of its potentially broad ap-
plicability.
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